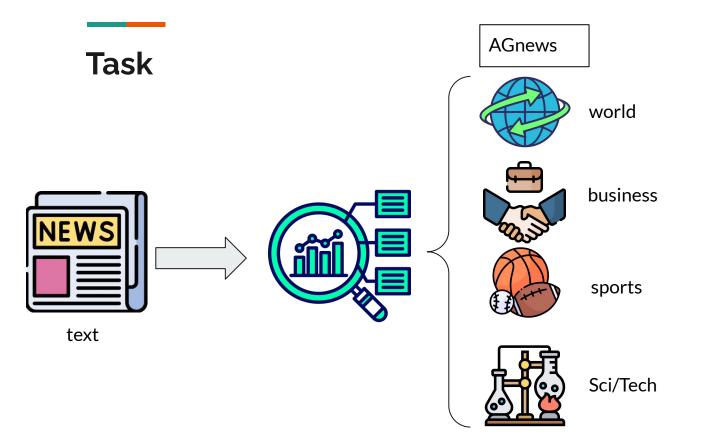
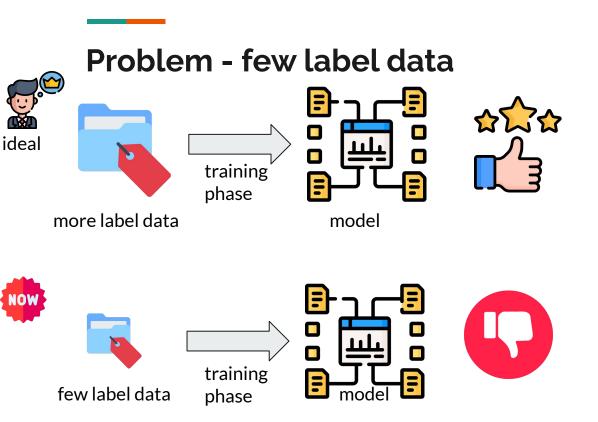
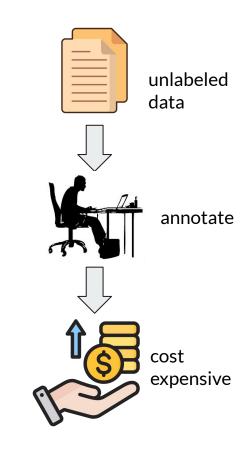
Neighborhood-RegularizedSelf-TrainingforLabelstask

Advisor : Jia-Ling, Koh

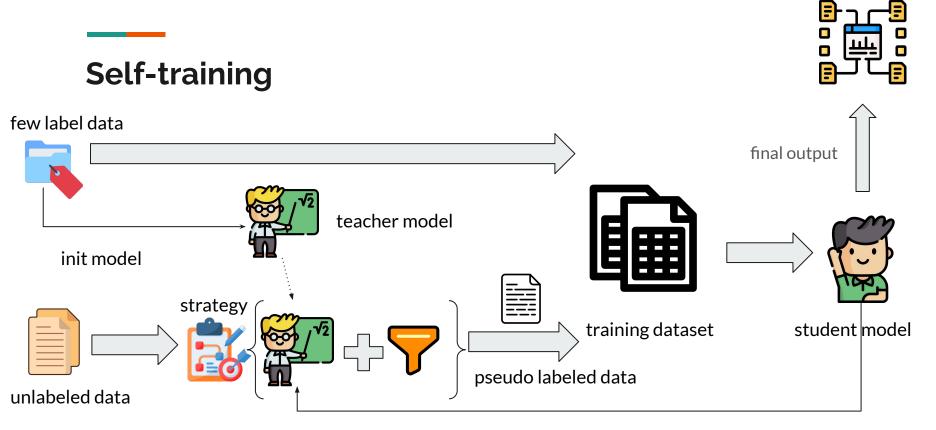

Speaker : Ting-I, Weng

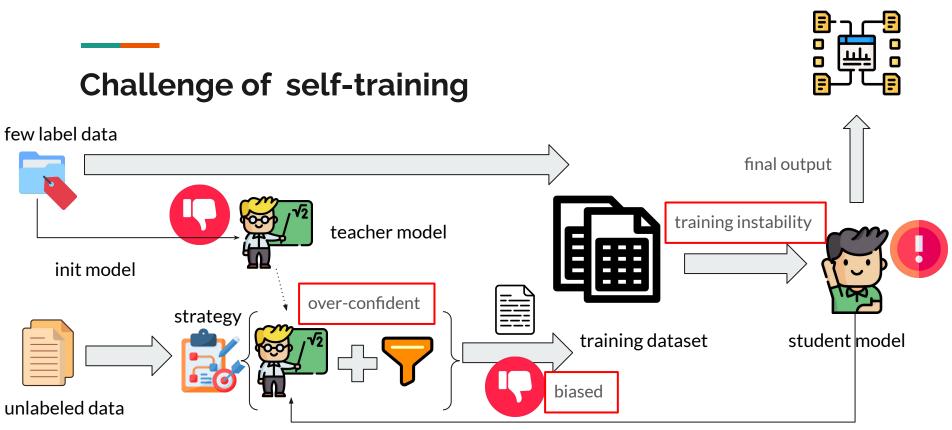
Source : AAAI'23


Date : 2023/12/19

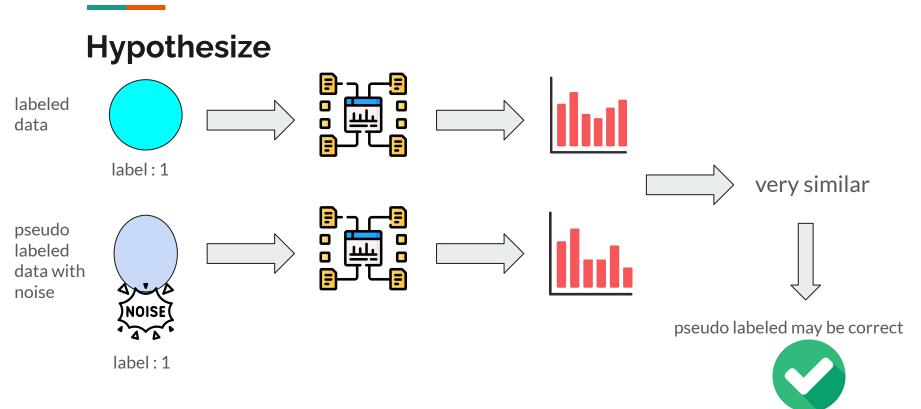

Outline

- Introduction
- Method
- Experiment
- Conclusion

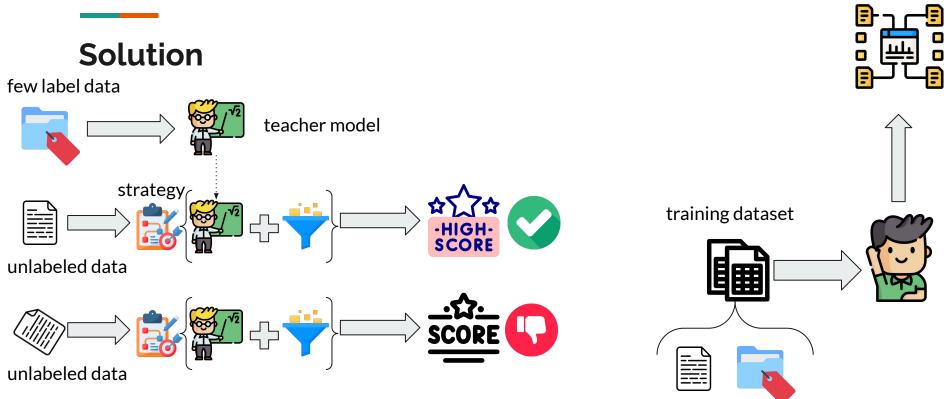

classification

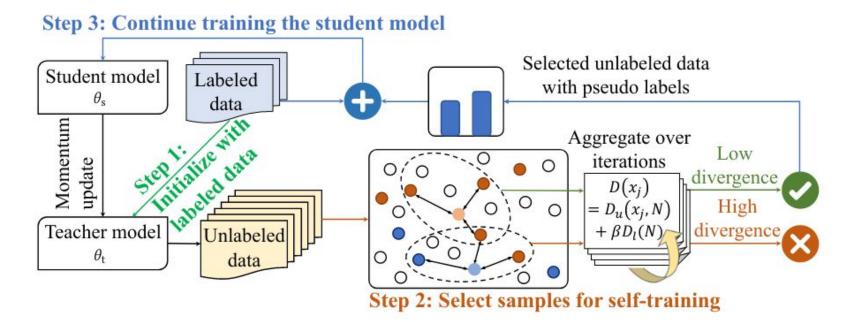


Hope to use unlabeled data to assist training



Discriminative Topic Mining via Category-Name Guided Text Embedding(<u>https://arxiv.org/pdf/1908.07162.pdf</u>)

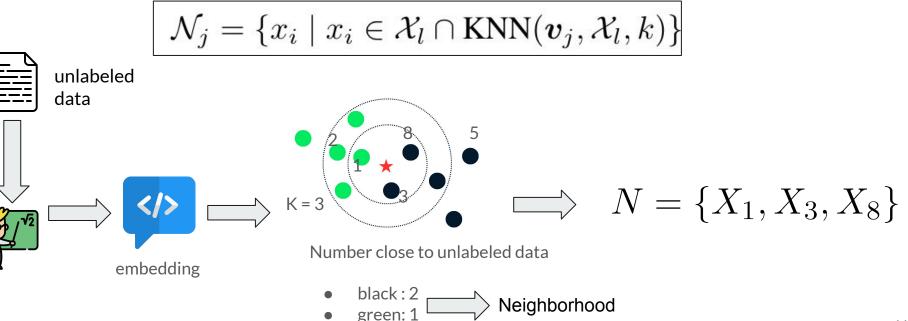

samples with similar labels tend to share similar representations



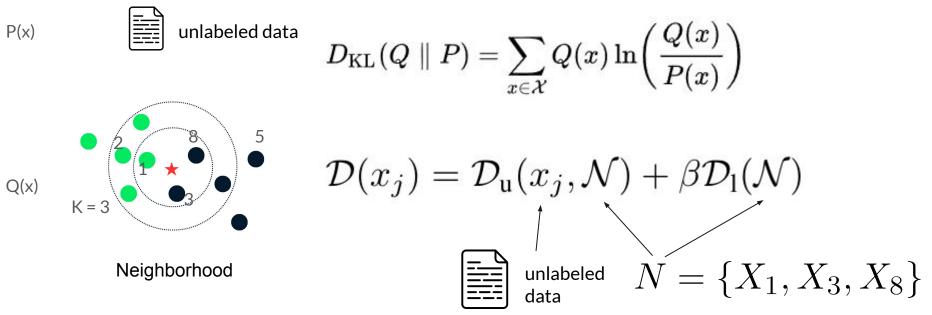
- over-confident
- biased

• training instability

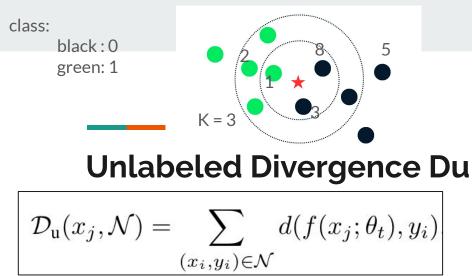
NeST(Neighborhood Regularized Self-Training)


Outline

- Introduction
- Method
- Experiment
- Conclusion


o green: 5

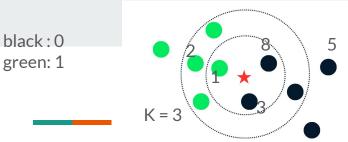
Neighborhood-Regularized Sample Selection



Divergence-based Sample Selection

$$= f(x_1^u; \theta_t) = [0.2, 0.8]$$

unlabeled data


$$y_i \begin{cases} y_1 = [0,1] \bullet \ y_2 = [1,0] \bullet \ y_3 = [1,0] \bullet \end{cases}$$

 $D_u(x_1^u, N_1) = d(f(x_1^u; \theta_t), y_1)$ $+d(f(x_1^u;\theta_t),y_2)$ $+d(f(x_1^u;\theta_t),y_3)$ $= 0 \log_e \frac{0}{0.2} + 1 \log_e \frac{1}{0.8}$ $+1log_e \frac{1}{0.2} + 0log_e \frac{0}{0.8}$ $+1log_e \frac{1}{0.2} + 0log_e \frac{0}{0.8}$ = 0.2231 + 1.6094 + 1.6094 = 3.442

 $N = \{X_1, X_3, X_8\}$

black : 2green: 1

class:

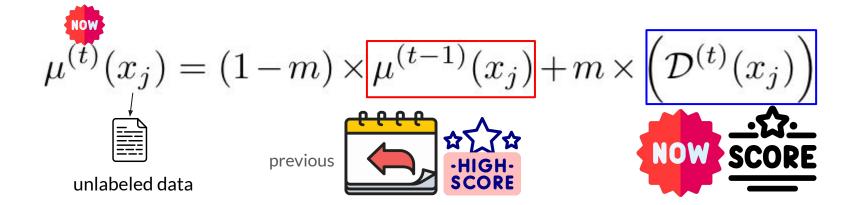
Labeled Divergence Dl

$$D_l(N_1) = \Sigma d(\bar{y}, y_i)$$

= $d([\frac{2}{3}, \frac{1}{3}], [0, 1])$
+ $d([\frac{2}{3}, \frac{1}{3}], [1, 0])$
+ $d([\frac{2}{3}, \frac{1}{3}], [1, 0)$
= 1.9125

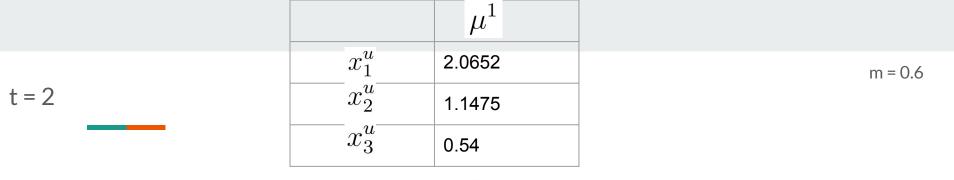
イ

Divergence-based Sample Selection


$$\mathcal{D}(x_j) = \mathcal{D}_u(x_j, \mathcal{N}) + \beta \mathcal{D}_l(\mathcal{N})$$
$$D(x_1^u) = 3.442 + \beta * 1.9125$$
$$= 3.442 + 0.1 * 1.9125 = 3.6332$$

Aggregation of Predictions from Different Iterations

previous epoch


Aggregation of Predictions from Different Iterations

Aggregation of Predictions from Different Iterations

$$\mu^{1}(x_{1}^{u}) = (1-m) * \mu^{1-1}(x_{1}^{u}) + m * (D^{1}(x_{1}^{u})) = 0.6 * 3.442 = 2.0652$$

$$\mu^{1}(x_{2}^{u}) = (1-m) * \mu^{1-1}(x_{2}^{u}) + m * (D^{1}(x_{2}^{u})) = 0.6 * 1.9125 = 1.1475$$

$$\mu^{1}(x_{3}^{u}) = (1-m) * \mu^{1-1}(x_{3}^{u}) + m * (D^{1}(x_{3}^{u})) = 0.6 * 0.9 = 0.54$$

label	$D^{t=1}(x_j)$	$D^{t=2}(x_j)$	$D^{t=3}(x_j)$ SCORE
x_1^u	3.442	2.5	1.5
x_2^u	1.9125	1.6	2.7
x_3^u	0.9	0.7	0.5

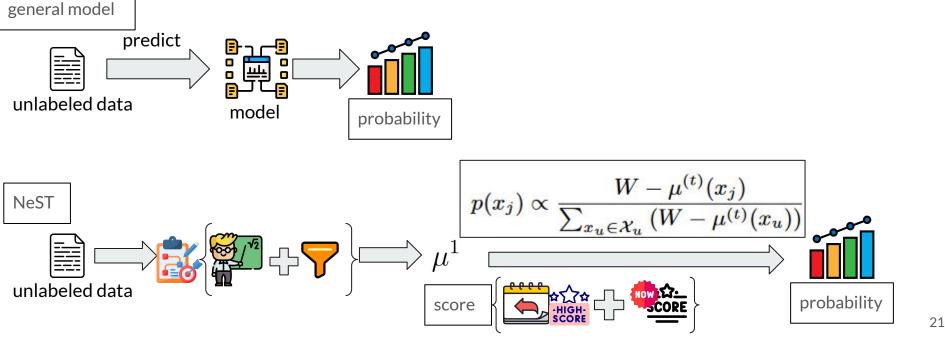
 $\mu^{2}(x_{1}^{u}) = (1-m) * \mu^{2-1}(x_{1}^{u}) + m * (D^{2}(x_{1}^{u})) = 0.4 * 2.0652 + 0.6 * 2.5 = 2.326$ $\mu^{2}(x_{2}^{u}) = (1-m) * \mu^{2-1}(x_{2}^{u}) + m * (D^{2}(x_{2}^{u})) = 0.4 * 1.1475 + 0.6 * 1.6 = 1.149$

 $\mu^{2}(x_{3}^{u}) = (1-m) * \mu^{2-1}(x_{3}^{u}) + m * (D^{2}(x_{3}^{u})) = 0.4 * 0.54 + 0.6 * 0.6243 = 0.5905$

label	$D^{t=1}(x_j)$	$D^{t=2}(x_j)$	$D^{t=3}(x_j)$ Score
x_1^u	3.442	2.5	1.5
x_2^u	1.9125	1.6	2.7
x_3^u	0.9	0.7	0.5

Robust Aggregation of Predictions from Different Iterations

model gives inconsistent predictions in different iterations


 x_1^u

model output consistently low scores in different iterations

	μ^1	μ^2	μ^3 suppose	μ^4 suppose	
x_1^u	2.0652	2.326	<mark>0.9</mark>	<mark>2.2</mark>	
x_2^u	1.1475	1.149	1.2	1.05	
x_3^u	0.54	0.5905	0.4	0.3	20

Robust Aggregation of Predictions from Different Iterations

t = 1

Robust Aggregation of Predictions from Different Iterations

$$p(x_j) \propto \frac{W - \mu^{(t)}(x_j)}{\sum_{x_u \in \mathcal{X}_u} (W - \mu^{(t)}(x_u))} \qquad W = max_x(\mu^t(x)) = 2.0652$$

\$

$$p(x_1) = \frac{2.0652 - 2.0652}{0 + (2.0652 - 1.1475) + (2.0652 - 0.54)} = 0$$

$$p(x_2) = \frac{2.0652 - 1.1475}{0 + (2.0652 - 1.1475) + (2.0652 - 0.54)} = 0.3756$$

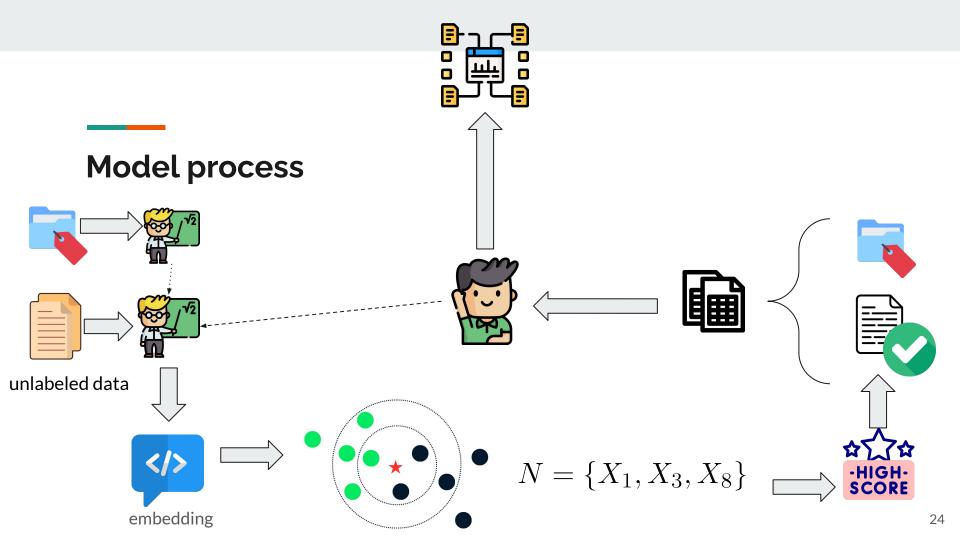
$$p(x_3) = \frac{2.0652 - 0.54}{0 + (2.0652 - 1.1475) + (2.0652 - 0.54)} = 0.6243$$

	μ^1	μ^2
x_1^u	2.0652	2.326
x_2^u	1.1475	1.149
x_3^u	0.54	0.5905

 $W = \max_{x \in \mathcal{X}_u}(\mu^{(t)}(x))$ is the normalizing factor.

(1)

t = 2


Robust Aggregation of Predictions from Different Iterations

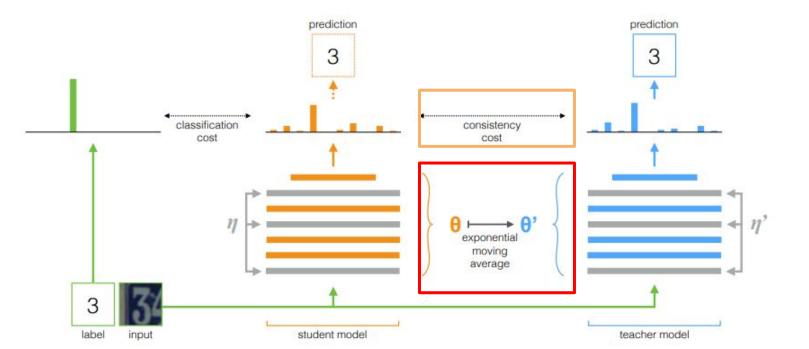
$$\frac{W - \mu^{(t)}(x_j)}{\sum_{x_u \in \mathcal{X}_u} (W - \mu^{(t)}(x_u))} \qquad W = max_x(\mu^t(x)) = 2.236$$

$$\frac{W - \mu^{(t)}(x_u)}{\sum_{x_u \in \mathcal{X}_u} (\mu^{(t)}(x)) \text{ is the normalizing factor}} \qquad p(x_1) = \frac{2.326 - 2.326}{[2.326 - 1.149] + [2.326 - 0.5905]} = 0$$

$$\frac{\mu^1}{x_1^u} \frac{\mu^2}{2.0652} \frac{2.326}{2.326} \qquad p(x_2) = \frac{2.326 - 1.149}{[2.326 - 1.149] + [2.326 - 0.5905]} = 0.4041$$

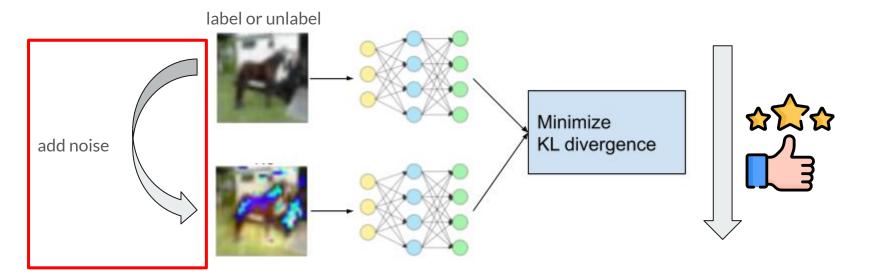
$$\frac{\mu^2}{x_1^u} \frac{1.1475}{1.149} \frac{1.149}{1.1475} \frac{1.149}{1.149} \qquad \mu^2 = \frac{2.326 - 0.5905}{[2.326 - 1.149] + [2.326 - 0.5905]} = 0.4041$$

Outline

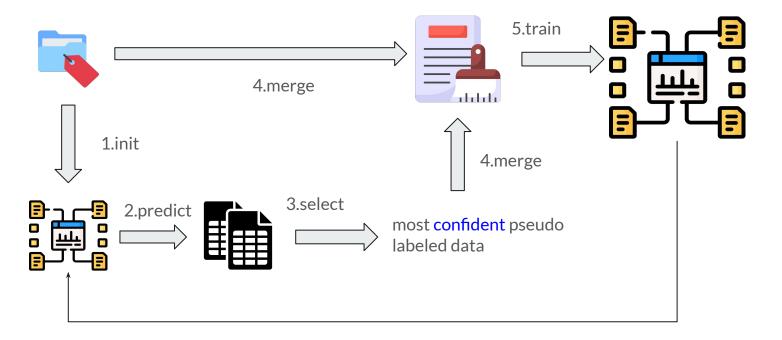

- Introduction
- Method
- Experiment
- Conclusion

PubMed : Free search engine for life sciences and biomedical references and indexes (https://pubmed.ncbi.nlm.nih.gov/)

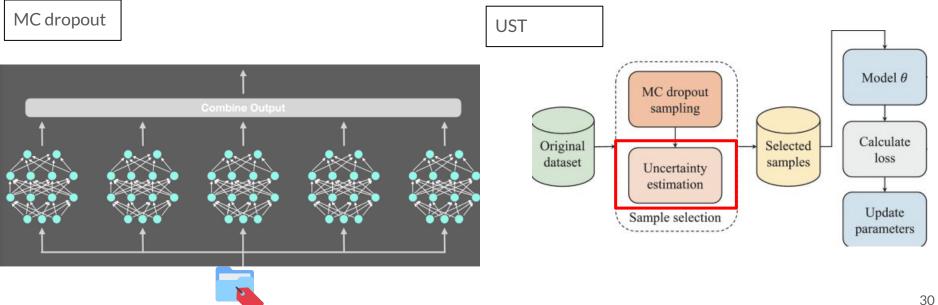
Dataset


Da	taset	Domai	in Task		# Train / Test	# Class	Metric
E	lec	Review	vs Sentiment Ana	alysis	25K/25K	2	Acc.
AG	News	News	Topic Classific	ation	120K / 7.6K	4	Acc.
N	YT	News	A DECEMBER OF A		30K / 3.0K	9	Acc.
Che	mprot	Chemic			12K / 1.6K	10	F1
Dataset	Ele	ec	AG News		NYT	Cł	emprot
description	Amazon sho review	opping	collection of news	New Yo	rk Times		Med abstracts emical-protein nnotated by
category	positive, ne	gative	World、Sports、Business、 Sci/Tech	science	、sports、music…	upregulator上調 downregulator下 agonist激動劑 antagonist拮抗劑	調劑

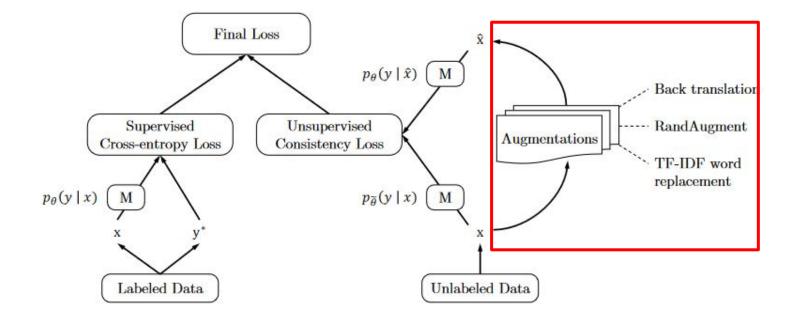
Baseline - Mean-Teacher



27


Baseline - Virtual Adversarial Training(VAT)

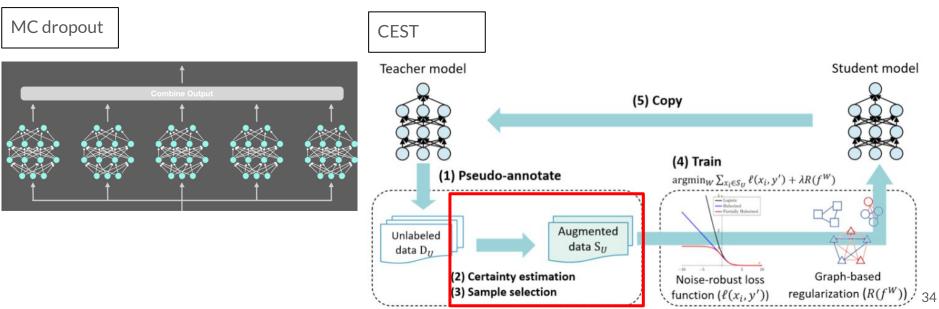
Baseline - Self-training(ST)



Baseline - Uncertainty-aware Self-training(UST)

Uncertainty es	timation -	Entropy	
	$log P_{\theta}(y_i x)$	$P_{\theta}(y_i x) log P_{\theta}(y_i x)$	$x_E^* = \underset{x}{argmax} - \sum_i P_{\theta}(y_i x) log P_{\theta}(y_i x)$
class A: 0.93 class B: 0.05 class C: 0.02	class A: -0.104 class B: -4.321 class C: -5.6438	<pre>class A: -0.09672 class B: -0.21605 class C: -0.11287</pre>	-(0.09672+0.21605+ 0.11287) = -0.4256 $x_E^* = -(-0.4256) = 0.4256$ entropy \bigcirc uncertain \bigcirc
class A: 0.55 class B: 0.35 class C: 0.1	class A: -0.8624 class B: -1.5145 class C: -3.3219	<pre>class B: -0.53007</pre>	-(0.47432+0.53007+ 0.33219) = -1.33658 $x_E^* = -(-1.33658) = 1.33658$ 31

Baseline - Unsupervised Data Augmentation(UDA)



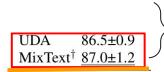
Baseline - MixText BERT Base $\tilde{y} = \lambda y + (1 - \lambda)y'$ MLP L = 12 Layer L t: Layer m+1 Mixup $\tilde{h} = \lambda h + (1 - \lambda)h'$ h h' m = 7 Layer m Layer m $\lambda \sim Beta(\alpha, \alpha)$ ÷ : Layer 1 Layer 1 x' x labeled pseudo label ===

y_1 y_0 y_0 x_0 x_1

Data Augmentation by interpolating

Baseline - Contrast-Enhanced Semi-supervised Text Classifcation(CEST)

Method	AG	News (Acc	uracy, ↑)
Method	30	50	100
BERT	80.6±1.4		
MT VAT UDA MixText [†]	81.8±1.2 82.1±1.2 86.5±0.9 87.0±1.2	\succ	unlabels are pels and used


all unlabels are marked as pseudo abels and used to train the model

NeST	87.8±0.8		
Superv.		93.0*	

Method	Name	Description
MT	Mean Teacher	average model weight
VAT	Virtual Adversarial Training	add noise with unlabel
UDA	Unsupervised Data Augmentation	data augmentation with unlabel
MixText	MixText	data augmentation + interpolating with unlabel
ST	self-training	use strategy to select unlabel
UST	Uncertainty-aware Self-training	MCdropout + uncertainty to select unlabel
CEST	Contrast-Enhanced Semi-supervised	MCdropout + certainty + Graph-based Contrast
Nest	Neighborhood-Regularized Self-Training	KNN + self-training

- use all unlabel
 - data augmentation methods are more effective than BERT , e.g. UDA, MixText

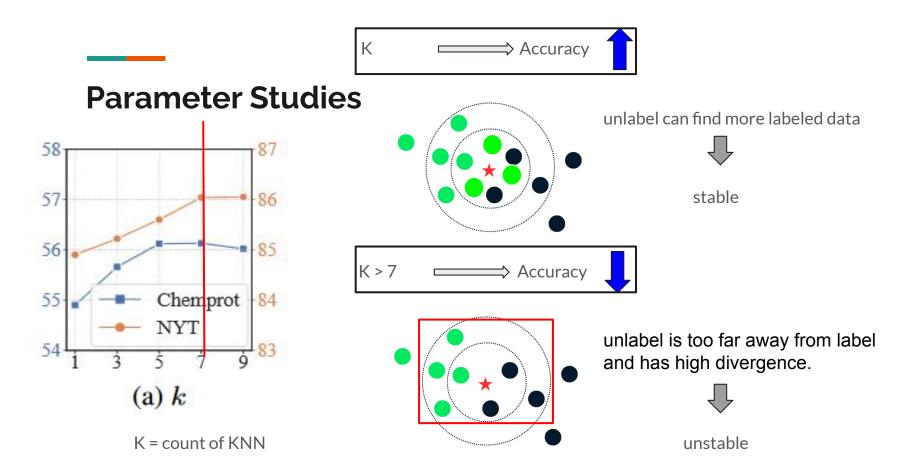
Method	AG I	News (Accur	racy, ↑)
Method	30	50	100

all unlabels are marked as pseudo labels and used to train the model

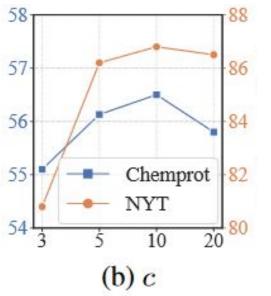
Method	Name	Description
MT	Mean Teacher	average model weight
VAT	Virtual Adversarial Training	add noise with unlabel
UDA	Unsupervised Data Augmentation	data augmentation with unlabel
MixText	MixText	data augmentation + interpolating with unlabel
ST	self-training	use strategy to select unlabel
UST	Uncertainty-aware Self-training	MCdropout + uncertainty to select unlabel
CEST	Contrast-Enhanced Semi-supervised	MCdropout + certainty + Graph-based Contrast
Nest	Neighborhood-Regularized Self-Training	KNN + self-training

• wrong pseudo label causes model confusion

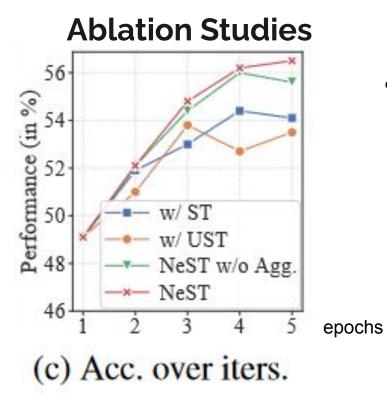
NeST	87.8±0.8	
Superv.		93.0*


Method	AG News (Accuracy, ↑)				
Method	30	50	100		

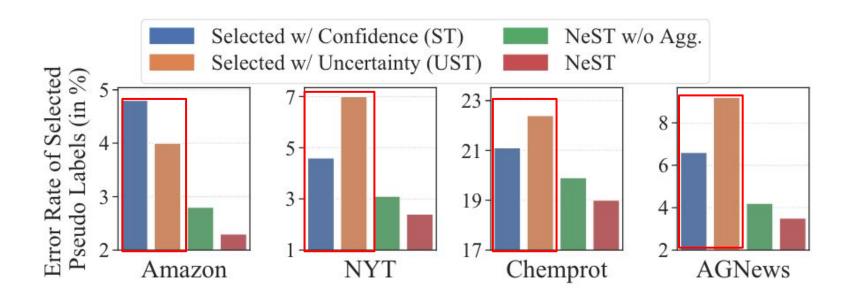
Method	Name	Description		
MT	Mean Teacher	average model weight		
VAT	Virtual Adversarial Training	add noise with unlabel		
UDA	Unsupervised Data Augmentation	data augmentation with unlabel		
MixText	MixText	data augmentation + interpolating with unlabel		
ST	self-training	use strategy to select unlabel		
UST	Uncertainty-aware Self-training	MCdropout + uncertainty to select unlabel		
CEST	Contrast-Enhanced Semi-supervised	MCdropout + certainty + Graph-based Contrast		
Nest	Neighborhood-Regularized Self-Training	KNN + self-training		



- too much reliance on model predictions
- NeST is selected by aggregating the scores from the previous iteration


Method	AG News (Accuracy, ↑)		Elec (Accuracy, ↑)		NYT (Accuracy, ↑)			Chemprot (F1, ↑)				
Method	30	50	100	30	50	100	30	50	100	30	50	100
BERT	80.6±1.4	83.1±1.6	86.0±1.1	85.0±1.9	87.2±1.0	90.2±1.2	79.4±1.6	83.0±1.1	85.7±0.5	49.1±2.3	51.2±1.7	54.9±1.4
MT VAT UDA MixText [†]	81.8±1.2 82.1±1.2 86.5±0.9 87.0±1.2	83.9±1.4 85.0±0.8 87.1±1.2 <u>87.7±0.9</u>	86.9±1.1 87.5±0.9 87.8±1.2 88.2±1.0	87.6±0.9 87.9±0.8 89.6±1.1 91.0±0.9	88.5±1.0 89.8±0.5 91.2±0.6 91.8±0.4	91.7±0.7 91.5±0.4 92.3±1.0 92.4±0.5	80.2±1.1 80.7±0.7 	83.5±1.3 84.4±0.9 —	86.1±1.1 86.5±0.6 —	50.0±0.7 50.7±0.7 	54.1±0.8 53.8±0.4 	56.8±0.4 57.0±0.5 —
ST UST CEST [‡]	86.0±1.4 86.9* 86.5*	86.9±1.0 87.4* 87.0*	87.8±0.6 87.9* <u>88.4*</u>	89.6±1.2 90.0* <u>91.5*</u>	91.4±0.4 91.6* <u>92.1*</u>	92.1±0.5 91.9* <u>92.5*</u>	85.4±0.9 85.0±0.6	86.9±0.5 86.7±0.4	87.5±0.5 87.1±0.3	<u>54.1±1.1</u> 53.5±1.3 —	55.3±0.7 55.7±0.4 —	59.3±0.5 59.5±0.7
NeST	87.8±0.8	88.4±0.7	89.5±0.3	92.0±0.3	92.4±0.2	93.0±0.2	86.5±0.7	88.2±0.7	88.6±0.6	56.5±0.7	57.2±0.4	62.0±0.5
Superv.		93.0*			95.3*			93.6±0.5			82.5±0.4	

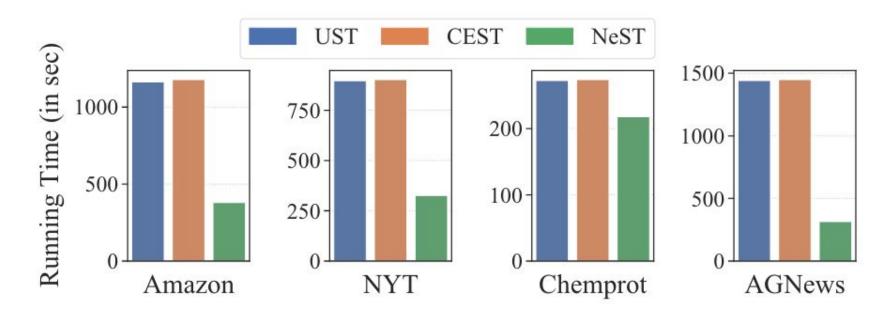
Parameter Studies


- if c = 3, labeled data = 120, b=c|xi| = 3 * 120 = 360
 - \circ ~ the number of pseudo labels is not enough
 - \circ accuracy is not high
- if c = 20, labeled data = 400, b=c|xi| = 20 * 400 = 8000
 pseudo data selected is too messy and poor quality
 - disrupt model learning
- c : multiple of how many samples to select in an epoch

- in the early stage
 - selected pseudo labels that can help the model learn.

ST	self-training	use strategy to select unlabel
UST	Uncertainty-aware Self-training	MCdropout + uncertainty to select unlabel
Nest	Neighborhood-Regularized Self-Training	KNN + self-training

Error of Pseudo Labels



https://github.com/facebookresearch/faiss

UST	Uncertainty-aware Self-training	MCdropout + uncertainty to select unlabel
CEST	Contrast-Enhanced Semi-supervised	MCdropout + certainty + Graph-based Contrast
Nest	Neighborhood-Regularized Self-Training	KNN + self-training

Running time of different methods

Outline

- Introduction
- Method
- Experiment
- Conclusion

Conclusion

• propose NeST to improve sample selection in self-training for robust label efficient learning

• design a neighborhood-regularized approach to select more reliable samples based on representations for self-training

• propose to aggregate the predictions on different iterations to stabilize self-training